Rabu, 10 Juni 2009
Selasa, 09 Juni 2009
· Besi ditemukan digunakan pertama kali pada sekitar 1500 SM
· Tahun 1100 SM, Bangsa hittites yang merahasiakan pembuatan tersebut selama 400 tahun dikuasai oleh bangsa asia barat, pada tahun tersebbut proses peleburan besi mulai diketahui secara luas.
· Tahun 1000 SM, bangsa yunani, mesir, jews, roma, carhaginians dan asiria juga mempelajari peleburan dan menggunakan besi dalam kehidupannya.
· Tahun 800 SM, India berhasil membuat besi setelah di invansi oleh bangsa arya.
· Tahun 700 – 600 SM, Cina belajar membuat besi.
· Tahun 400 – 500 SM, baja sudah ditemukan penggunaannya di eropa.
· Tahun 250 SM bangsa India menemukan cara membuat baja
· Tahun 1000 M, baja dengan campuran unsur lain ditemukan pertama kali pada 1000 M pada kekaisaran fatim yang disebut dengan baja damascus.
· 1300 M, rahasia pembuatan baja damaskus hilang.
· 1700 M, baja kembali diteliti penggunaan dan pembuatannya di eropa.
bijih besi antara lain :
Hematite - Fe2O3 - 70 % iron
Magnetite - Fe3O4 - 72 % iron
Limonite - Fe2O3 + H2O - 50 % to 66 % iron
Siderite - FeCO3 - 48 % iron
Pemurnian Besi
· Prinsip dasar : Menghilangkan kandungan oksigen dalam bijih besi.
· Cara tradisional : blomery, pada proses ini bijih besi dibakar dengan charcoal, dimana banyak mengandung carbon sehingga terjadi pengikatan oksigen, pembakaran tersebut menghasilkan karbondiokasida dan karbon monoksida yang terlepas ke udara, sehingga besi murni didapat dan dikeluarkan dari dapur,kekurangnya tidak semua besi dapat melebur sehingga terbentuk spoge, spoge berisi besi dan silica.
· Proses lebih modern adalah dengan blas furnace, blast furnace diisi oleh bijih besi, charcoal atau coke (coke adalah charcoal yang terbuat dari coal) dan limestone (CaCO3). Angin secara kencang dan kontinu ditiupkan dari bawah dapur. Hasil peluburan besi akan berada di bawah, cairan besi yang keluar ditampung dan disebut dengan pig iron.
Proses pembuatan baja
Baja diproduksi didalam dapur pengolahan baja dari besi kasar baik padat maupun cair, besi bekas ( Skrap ) dan beberapa paduan logam. Ada beberapa proses pembuatan baja antara lain :
proses konvertor
terdiri dari satu tabung yang berbentuk bulat lonjong dengan menghadap kesamping.
Sistem kerja
Dipanaskan dengan kokas sampai ± 1500 0C,
Dimiringkan untuk memasukkan bahan baku baja. (± 1/8 dari volume konvertor)
Kembali ditegakkan.
Udara dengan tekanan 1,5 – 2 atm dihembuskan dari kompresor.
Setelah 20-25 menit konvertor dijungkirkan untuk mengelaurkan hasilnya.
· proses Bassemer (asam)
lapisan bagian dalam terbuat dari batu tahan api yang mengandung kwarsa asam atau aksid asam (SiO2), Bahan yang diolah besi kasar kelabu cair, CaO tidak ditambahkan sebab dapat bereaksi dengan SiO2, SiO2 + CaO CaSiO3
· proses Thomas (basa)
Lapisan dinding bagian dalam terbuat dari batu tahan api bisa atau dolomit [ kalsium karbonat dan magnesium (CaCO3 + MgCO3)], besi yang diolah besi kasar putih yang mengandung P antara 1,7 – 2 %, Mn 1 – 2 % dan Si 0,6-0,8 %. Setelah unsur Mn dan Si terbakar, P membentuk oksida phospor (P2O5), untuk mengeluarkan besi cair ditambahkan zat kapur (CaO),
3 CaO + P2O5 Ca3(PO4)2 (terak cair)
proses Siemens Martin
menggunakan sistem regenerator (± 3000 0C.) fungsi dari regenerator adalah :
memanaskan gas dan udara atau menambah temperatur dapur
sebagai Fundamen/ landasan dapur
menghemat pemakaian tempat
Bisa digunakan baik besi kelabu maupun putih,
Besi kelabu dinding dalamnya dilapisi batu silika (SiO2),
besi putih dilapisi dengan batu dolomit (40 % MgCO3 + 60 % CaCO3)
proses Basic Oxygen Furnace
logam cair dimasukkan ke ruang baker (dimiringkan lalu ditegakkan)
Oksigen (± 1000) ditiupkan lewat Oxygen Lance ke ruang bakar dengan kecepatan tinggi. (55 m3 (99,5 %O2) tiap satu ton muatan) dengan tekanan 1400 kN/m2.
ditambahkan bubuk kapur (CaO) untuk menurunkan kadar P dan S.
Keuntungan dari BOF adalah:
· BOF menggunakan O2 murni tanpa Nitrogen
· Proses hanya lebih-kurang 50 menit.
· Tidak perlu tuyer di bagian bawah
· Phosphor dan Sulfur dapat terusir dulu daripada karbon
· Biaya operasi murah
proses dapur listrik
temperatur tinggi dengan menggunkan busur cahaya electrode dan induksi listrik.
Keuntungan :
· Mudah mencapai temperatur tinggi dalam waktu singkat
· Temperatur dapat diatur
· Efisiensi termis dapur tinggi
· Cairan besi terlindungi dari kotoran dan pengaruh lingkungan sehingga kualitasnya baik
· Kerugian akibat penguapan sangat kecil
proses dapur kopel
mengolah besi kasar kelabu dan besi bekas menjadi baja atau besi tuang.
Proses
pemanasan pendahuluan agar bebas dari uap cair.
Bahan bakar(arang kayu dan kokas) dinyalakan selama ± 15 jam.
kokas dan udara dihembuskan dengan kecepatan rendah hingga kokas mencapai 700 – 800 mm dari dasar tungku.
besi kasar dan baja bekas kira-kira 10 – 15 % ton/jam dimasukkan.
15 menit baja cair dikeluarkan dari lubang pengeluaran.
Untuk membentuk terak dan menurunkan kadar P dan S ditambahkan batu kapur (CaCO3) dan akan terurai menjadi:
akan bereaksi dengan karbon:
Gas CO yang dikeluarkan melalui cerobong, panasnya dapat dimanfaatkan untuk pembangkit mesin-mesin lain.
proses dapur Cawan
· Proses kerja dapur cawan dimulai dengan memasukkan baja bekas dan besi kasar dalam cawan,
· kemudian dapur ditutup rapat.
· Kemudian dimasukkan gas-gas panas yang memanaskan sekeliling cawan dan muatan dalam cawan akan mencair.
· Baja cair tersebut siap dituang untuk dijadikan baja-baja istimewa dengan menambahkan unsur-unsur paduan yang diperlukan
Klasifikasi baja
1. Menurut komposisi kimianya:
a. Baja karbon (carbon steel), dibagi menjadi tiga yaitu;
· Baja karbon rendah (low carbon steel) è machine, machinery dan mild steel
- 0,05 % - 0,30% C.
Sifatnya mudah ditempa dan mudah di mesin. Penggunaannya:
- 0,05 % - 0,20 % C : automobile bodies, buildings, pipes, chains, rivets, screws, nails.
- 0,20 % - 0,30 % C : gears, shafts, bolts, forgings, bridges, buildings.
· Baja karbon menengah (medium carbon steel)
- Kekuatan lebih tinggi daripada baja karbon rendah.
- Sifatnya sulit untuk dibengkokkan, dilas, dipotong. Penggunaan:
- 0,30 % - 0,40 % C : connecting rods, crank pins, axles.
- 0,40 % - 0,50 % C : car axles, crankshafts, rails, boilers, auger bits, screwdrivers.
- 0,50 % - 0,60 % C : hammers dan sledges.
· Baja karbon tinggi (high carbon steel) è tool steel
- Sifatnya sulit dibengkokkan, dilas dan dipotong. Kandungan 0,60 % - 1,50 % C
Penggunaan
- screw drivers, blacksmiths hummers, tables knives, screws, hammers, vise jaws, knives, drills. tools for turning brass and wood, reamers, tools for turning hard metals, saws for cutting steel, wire drawing dies, fine cutters.
b. Baja paduan (alloy steel)
Tujuan dilakukan penambahan unsur yaitu:
1. Untuk menaikkan sifat mekanik baja (kekerasan, keliatan, kekuatan tarik dan sebagainya)
2. Untuk menaikkan sifat mekanik pada temperatur rendah
3. Untuk meningkatkan daya tahan terhadap reaksi kimia (oksidasi dan reduksi)
Untuk membuat sifat-sifat spesial
Baja paduan yang diklasifikasikan menurut kadar karbonnya dibagi menjadi:
1. Low alloy steel, jika elemen paduannya ≤ 2,5 %
2. Medium alloy steel, jika elemen paduannya 2,5 – 10 %
3. High alloy steel, jika elemen paduannya > 10 %
Selain itu baja paduan dibagi menjadi dua golongan yaitu baja campuran khusus (special alloy steel) dan high speed steel.
· Baja Paduan Khusus (special alloy steel)
Baja jenis ini mengandung satu atau lebih logam-logam seperti nikel, chromium, manganese, molybdenum, tungsten dan vanadium. Dengan menambahkan logam tersebut ke dalam baja maka baja paduan tersebut akan merubah sifat-sifat mekanik dan kimianya seperti menjadi lebih keras, kuat dan ulet bila dibandingkan terhadap baja karbon (carbon steel).
· High Speed Steel (HSS) è Self Hardening Steel
Kandungan karbon : 0,70 % - 1,50 %. Penggunaan membuat alat-alat potong seperti drills, reamers, countersinks, lathe tool bits dan milling cutters. Disebut High Speed Steel karena alat potong yang dibuat dengan material tersebut dapat dioperasikan dua kali lebih cepat dibanding dengan carbon steel. Sedangkan harga dari HSS besarnya dua sampai empat kali daripada carbon steel.
Baja Paduan dengan Sifat Khusus
1. Baja Tahan Karat (Stainless Steel)
Sifatnya antara lain:
· Memiliki daya tahan yang baik terhadap panas, karat dan goresan/gesekan
· Tahan temperature rendah maupun tinggi
· Memiliki kekuatan besar dengan massa yang kecil
· Keras, liat, densitasnya besar dan permukaannya tahan aus
· Tahan terhadap oksidasi
· Kuat dan dapat ditempa
· Mudah dibersihkan
· Mengkilat dan tampak menarik
Jumat, 05 Juni 2009
Senin, 01 Juni 2009
grafik
tata surya
Tata Surya[a] adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut matahari dan semua obyek yang yang mengelilinginya. Obyek-obyek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet-planet kerdil/katai, 173 satelit-satelit alami yang telah diidentifikasi[b], dan jutaan benda langit (meteor, asteroid, komet) lainnya.
Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet bagian luar, dan di bagian terluar adalah Sabuk Kuiper dan piringan tersebar. Awan Oort diperkirakan terletak di daerah terjauh yang berjarak sekitar seribu kali di luar bagian yanng terluar.
Berdasarkan jaraknya, kedelapan planet itu ialah:
- Merkurius (57.900.000 km)
- Venus (108.000.000 km)
- Bumi (150.000.000 km)
- Mars (228.000.000 km)
- Jupiter (779.000.000 km)
- Saturnus (1.430.000.000 km)
- Uranus (2.880.000.000 km)
- Neptunus (4.500.000.000 km)
Sejak pertengahan 2008, ada lima obyek angkasa yang diklasifikasikan sebagai planet kerdil, yang orbitnya - kecuali Ceres - berada lebih jauh dari Neptunus. Kelima planet katai itu adalah:
- Ceres (415.000.000 km. di sabuk asteroid; dulunya diklasifikasikan sebagai planet kelima)
- Pluto (5.906.000.000 km.; dulunya diklasifikasikan sebagai planet kesembilan)
- Haumea (6.450.000.000 km)
- Makemake (6.850.000.000 km)
- Eris (10.100.000.000 km)
Enam dari kedelapan planet dan tiga dari kelima planet kerdil itu dikelilingi oleh satelit alami, yang biasa disebut dengan "bulan" sesuai dengan Bulan atau satelit alami Bumi. Masing-masing dari planet bagian luar dikelilingi oleh cincin planet yang terdiri dari debu dan partikel lain.
Daftar isi[sembunyikan] |
[sunting] Asal usul
Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, diantaranya :
- Hipotesis Nebula
Hipotesis nebula pertama kali dikemukakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Kemudian hipotesis ini disempurnakan oleh Pierre Marquis de Laplace pada tahun 1796. Oleh karena itu, hipotesis ini lebih dikenal dengan Hipotesis nebula Kant-Laplace. Pada tahap awal Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula. Unsur gas sebagian besar berupa hidrogen. Karena gaya gravitasi yang dimilikinya, kabut itu menyusut dan berputar dengan arah tertentu. Akibatnya, suhu kabut memanas dan akhirnya menjadi bintang raksasa yang disebut matahari. Matahari raksasa terus menyusut dan perputarannya semakin cepat. Selanjutnya cincin-cincin gas dan es terlontar ke sekeliling matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam. Dengan cara yang sama, planet luar juga terbentuk.
- Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlain dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang hampir menabrak matahari.
- Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jean dan Herold Jaffries pada tahun 1917. Hipotesis pasang surut bintang sangat mirip dengan hipotesis planetisimal. Namun perbedaannya terletak pada jumlah awalnya matahari.
- Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.
- Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. serpihan itu akan terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya
[sunting] Sejarah penemuan
Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa matahari adalah pusat alam semesta, bukan Bumi, yang digagas oleh Nicolaus Copernicus (1473-1543) sebelumnya. Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
Pada 1781, William Hechell (1738-1782) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya obyek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 obyek kecil lain di belakang Neptunus (disebut obyek trans-Neptunus) yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 obyek serupa yang dikenal sebagai obyek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari obyek-obyek trans-Neptunus). Belasan benda langit termasuk dalam Obyek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Obyek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, obyek ini juga memiliki satelit.
[sunting] Struktur
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya.[1] Jupiter dan Saturnus, dua komponen terbesar yang mengedari matahari, mencakup kira-kira 90 persen massa selebihnya.[c]
Hampir semua obyek-obyek besar yang mengorbit matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan obyek-obyek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.
Planet-planet dan obyek-obyek Tata Surya juga mengorbit mengelilingi matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara matahari, terkecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari obyek-obyek Tata Surya sekeliling matahari bergerak mengikuti bentuk elips dengan matahari sebagai salah satu titik fokusnya. Obyek yang berjarak lebih dekat dari matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara obyek dengan matahari bervariasi sepanjang tahun. Jarak terdekat antara obyek dengan matahari dinamai perihelion, sedangkan jarak terjauh dari matahari dinamai aphelion. Semua obyek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan obyek sabuk Kuiper kebanyakan orbitnya berbentuk elips.
Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari matahari, semakin besar jarak antara obyek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi (SA) lebih dari Merkurius[d], sedangkan Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.
Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit, atau bulan. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.
[sunting] Terminologi
Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa.[2] Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua obyek melampaui Neptunus.[3]
Secara dinamis dan fisik, obyek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, dan badan Tata Surya kecil. Planet adalah sebuah badan yang mengedari matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua obyek-obyek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari obyek-obyek sabuk Kuiper.[4] Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya.[4] Menurut definisi ini, Tata Surya memliki lima buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris.[5] Obyek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoids".[6] Sisa obyek-obyek lain berikutnya yang mengitari matahari adalah badan Tata Surya kecil.[4]
Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida,[7] memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.[8]
Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, 'volatiles' dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.
[sunting] Zona planet
Di zona planet dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius (jarak dari matahari 57,9 × 106 km, atau 0,39 SA), Venus (108,2 × 106 km, 0,72 SA), Bumi (149,6 × 106 km, 1 SA) dan Mars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.
Antara Mars dan Yupiter terdapat daerah yang disebut sabuk asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid ini hanya berdiameter beberapa kilometer (lihat: Daftar asteroid), dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).
Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus (2,875 × 109 km, 19,2 SA) dan Neptunus (4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3 dan 1,66 g/cm3.
Jarak rata-rata antara planet-planet dengan matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya, planet Neptunus tidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.
[sunting] Matahari
Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.
Matahari dikategorikan ke dalam bintang kerdil kuning (tipe G V) yang berukuran tengahan, tetapi nama ini bisa menyebabkan kesalahpahaman, karena dibandingkan dengan bintang-bintang yang ada di dalam galaksi Bima Sakti, matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell, yaitu sebuah grafik yang menggambarkan hubungan nilai luminositas sebuah bintang terhadap suhu permukaannya. Secara umum, bintang yang lebih panas akan lebih cemerlang. Bintang-bintang yang mengikuti pola ini dikatakan terletak pada deret utama, dan matahari letaknya persis di tengah deret ini. Akan tetapi, bintang-bintang yang lebih cemerlang dan lebih panas dari matahari adalah langka, sedangkan bintang-bintang yang lebih redup dan dingin adalah umum.[9]
Dipercayai bahwa posisi matahari pada deret utama secara umum merupakan "puncak hidup" dari sebuah bintang, karena belum habisnya hidrogen yang tersimpan untuk fusi nuklir. Saat ini Matahari tumbuh semakin cemerlang. Pada awal kehidupannya, tingkat kecemerlangannya adalah sekitar 70 persen dari kecermelangan sekarang. [10]
Matahari secara metalisitas dikategorikan sebagai bintang "populasi I". Bintang kategori ini terbentuk lebih akhir pada tingkat evolusi alam semesta, sehingga mengandung lebih banyak unsur yang lebih berat daripada hidrogen dan helium ("metal" dalam sebutan astronomi) dibandingkan dengan bintang "populasi II".[11] Unsur-unsur yang lebih berat daripada hidrogen dan helium terbentuk di dalam inti bintang purba yang kemudian meledak. Bintang-bintang generasi pertama perlu punah terlebih dahulu sebelum alam semesta dapat dipenuhi oleh unsur-unsur yang lebih berat ini. Bintang-bintang tertua mengandung sangat sedikit metal, sedangkan bintang baru mempunyai kandungan metal yang lebih tinggi. Tingkat metalitas yang tinggi ini diperkirakan mempunyai pengaruh penting pada pembentukan sistem Tata Surya, karena terbentuknya planet adalah hasil penggumpalan metal.[12]
[sunting] Medium antarplanet
Disamping cahaya, matahari juga secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin matahari. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta kilometer per jam,[13] menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya paling tidak sejauh 100 SA (lihat juga heliopause). Kesemuanya ini disebut medium antarplanet. Badai geomagnetis pada permukaan matahari, seperti semburan matahari dan pengeluaran massa korona menyebabkan gangguan pada heliosfer, menciptakan cuaca ruang angkasa.[14] Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer, sebuah spiral yang terjadi karena gerak rotasi magnetis matahari terhadap medium antarplanet.[15][16] Medan magnet bumi mencegah atmosfer bumi berinteraksi dengan angin matahari. Venus dan Mars yang tidak memiliki medan magnet, atmosfernya habis terkikis ke luar angkasa.[17] Interaksi antara angin matahari dan medan magnet bumi menyebabkan terjadinya aurora, yang dapat dilihat dekat kutub magnetik bumi.
Heliosfer juga berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet matahari mengalami perubahan pada skala waktu yang sangat panjang, sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi, meski tidak diketahui seberapa besar.[18]
Medium antarplanet juga merupakan tempat beradanya paling tidak dua daerah mirip piringan yang berisi debu kosmis. Yang pertama, awan debu zodiak, terletak di Tata Surya bagian dalam dan merupakan penyebab cahaya zodiak. Ini kemungkinan terbentuk dari tabrakan dalam sabuk asteroid yang disebabkan oleh interaksi dengan planet-planet.[19] Daerah kedua membentang antara 10 SA sampai sekitar 40 SA, dan mungkin disebabkan oleh tabrakan yang mirip tetapi tejadi di dalam Sabuk Kuiper.[20][21]
[sunting] Tata Surya bagian dalam
Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, obyek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.
[sunting] Planet-planet bagian dalam
Empat planet bagian dalam atau planet kebumian memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai bulan dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
[sunting] Merkurius
Merkurius (0,4 SA) adalah planet terdekat dari matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah (lobed ridges atau rupes), kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya.[22] Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin matahari.[23] Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal matahari.[24][25]
[sunting] Venus
Venus (0,7 SA) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer.[26] Sejauh ini activitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi. [27]
[sunting] Bumi
Bumi adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki activitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diobservasi memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen.[28] Bumi memiliki satu satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
[sunting] Mars
Mars (1,5 SA) berukuran lebih keci dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi.[29] Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.[30]
[sunting] Sabuk asteroid
Asteroid secara umum adalah obyek Tata Surya yang terdiri dari batuan dan mineral logam beku. [31]
Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter. [32]
Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai badan Tata Surya kecil. Beberapa asteroid seperti Vesta dan Hygieia mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai equilibrium hidrostatik. [33]
Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan obyek yang berdiameter satu kilometer.[34] Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi.[35] Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10-4 m disebut meteorid. [36]
[sunting] Ceres
Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi.[37] Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.
[sunting] Kelompok asteroid
Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. Bulan asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari bulan-bulan planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi. [38]
Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan "trojan" sering digunakan untuk obyek-obyek kecil pada titik langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari matahari tiga kali untuk setiak dua edaran Yupiter.
Bagian dalam Tata Surya juga dipenuhi oleh asteroid liar, yang banyak memotong orbit-orbit planet planet bagian dalam.
[sunting] Tata Surya bagian luar
Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk Centaurs, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung volatiles yang lebih tinggi (contoh: air, amonia, metan, yang sering disebut es dalam peristilahan ilmu keplanetan) dibandingkan planet batuan di bagian dalam Tata Surya.
[sunting] Planet-planet luar
Keempat planet luar, atau gas raksasa (yang disebut juga planet jovian), secara keseluruhan mencakup 99 persen massa yang mengorbit matahari. Jupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es.[39] Keempat gas raksasa ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.
[sunting] Yupiter
Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen dan helium. Sumber panas di dalam Jupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Jupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europa menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas.[40] Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.
[sunting] Saturnus
Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Jupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Jupiter, planet ini hanya seberat kurang dari sepertiga Jupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja.[41] Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
[sunting] Uranus
Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari matahari dengan bujkuran poros 90 derajad pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas.[42] Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.
[sunting] Neptunus
Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Jupiter atau Saturnus.[43] Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair.[44] Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.
[sunting] Komet
Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.
Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal.[45] Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit.[46] Komet tua yang bahan volatilesnya telah habis karena panas matahari sering dikategorikan sebagai asteroid.[47]
[sunting] Centaurs
Centaurs adalah benda-benda es mirip komet yang poros semi-majornya lebih besar dari Yupiter (5,5 SA) dan lebih kecil dari Neptunus (30 SA). Centaur terbesar yang diketahui adalah, 10199 Chariklo, berdiameter 250 km.[48] Centaur temuan pertama, 2060 Chiron, juga diklasifikasikan sebagai komet (95P) karena memiliki koma sama seperti komet kalau mendekati matahari.[49] Beberapa astronom mengklasifikasikan Centaurs sebagai obyek sabuk Kuiper sebaran-ke-dalam, seiring dengan sebaran keluar yang bertempat di piringan tersebar (outward-scattered residents of the scattered disc).[50]
[sunting] Daerah trans-Neptunus
Daerah yang terletak jauh melebihi Neptunus, atau daerah trans-Neptunus, sebagian besar belum dieksplorasi. Menurut dugaan daerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya, meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.
[sunting] Sabuk Kuiper
Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid, tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA, dan terdiri dari badan Tata Surya kecil. Meski demikian, obyek Kuiper yang terbesar, seperti Quaoar, Varuna, dan Orcus, mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 obyek sabuk Kuiper yang berdiameter lebih dari 50 km, tetapi diperkirakan massa total sabuk Kuiper hanya sepersepuluh massa bumi.[51] Banyak obyek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.
Sabuk Kuiper secara kasar bisa dibagi menjadi "sabuk klasik" dan resonansi. Resonansi adalah orbit yang terkait pada Neptunus (contoh: dua orbit untuk setiap tiga orbit Neptunus atau satu untuk setiap dua). Resonansi yang pertama bermula pada Neptunus sendiri. Sabuk klasik terdiri dari obyek yang tidak memiliki resonansi dengan Neptunus, dan terletak sekitar 39,4 SA sampai 47,7 SA.[52] Anggota dari sabuk klassik diklasifikasikan sebagai cubewanos, setelah anggota jenis pertamanya ditemukan (15760) 1992QB1 [53]
[sunting] Pluto dan Charon
Pluto (rata-rata 39 SA), sebuah planet kerdil, adalah obyek terbesar sejauh ini di sabuk Kuiper. Ketika ditemukan pada tahun 1930, benda ini dianggap sebagai planet yang ke sembilan, definisi ini diganti pada tahun 2006 dengan diangkatnya definisi formal planet. Pluto memiliki kemiringan orbit cukup eksentrik (17 derajat dari bidang ekliptika) dan berjarak 29,7 SA dari matahari pada titik prihelion (sejarak orbit Neptunus) sampai 49,5 SA pada titik aphelion.
Tidak jelas apakah Charon, bulan Pluto yang terbesar, akan terus diklasifikasikan sebagai satelit atau sebuah planet kerdil juga. Pluto dan Charon, keduanya mengedari titik barycenter gravitas di atas permukaanya, yang membuat Pluto-Charon sebuah sistem ganda. Dua bulan yang jauh lebih kecil Nix dan Hydra juga mengedari Pluto dan Charon. Pluto terletak pada sabuk resonan dan memiliki 3:2 resonansi dengan Neptunus, yang berarti Pluto mengedari matahari dua kali untuk setiap tiga edaran Neptunus. Obyek sabuk Kuiper yang orbitnya memiliki resonansi yang same disebut plutinos.[54]